What will be the role of a copper layer in a metal core PCB in thermal dissipation?

In the design of a power electronic PCB, I want to use a metal PCB for heat dissipation of a TO-220 package MOSFET. To do that I want to mount metal PCB on the MOSFET with the use of thermal paste and screw exactly like we do when we use heatsink for the same package. Should I leave the copper of PCB between MOSFET surface and dielectric of PCB or remove the copper surface and leave only the dielectric opening?

I doubt it makes much difference unless the copper extends beyond the contact that would exist with the dielectric.

If the copper extends, you’ll have better lateral heat spreading and that will conduct through the dielectric so there will be less temperature drop across the dielectric.

Copper conducts heat about 400x better than the dielectric (which may be 50-200um thick) and is typically 35 or 70um thick (1oz/2oz). So extending it at least a few mm should help a little. I’m not sure it’s a huge difference, even at 200um and 1.0 W/m*K the temperature drop at (say) 5W is less than 7°C if I did the sums correctly (10mm x 15mm contact). If a 15 x 20mm pad was isothermal (which it won’t be but say it was a bit bigger than that), then it would reduce the drop to half, saving a few °C. The savings would be proportionally less (or worse) if the dielectric was thinner, so it might not be much.

Read More: Heavy Copper PCB

#PCB Design  #PCB Materials

Picture of Oliver Smith

Oliver Smith

Oliver is an experienced electronics engineer skilled in PCB design, analog circuits, embedded systems, and prototyping. His deep knowledge spans schematic capture, firmware coding, simulation, layout, testing, and troubleshooting. Oliver excels at taking projects from concept to mass production using his electrical design talents and mechanical aptitude.
Picture of Oliver Smith

Oliver Smith

Oliver is an experienced electronics engineer skilled in PCB design, analog circuits, embedded systems, and prototyping. His deep knowledge spans schematic capture, firmware coding, simulation, layout, testing, and troubleshooting. Oliver excels at taking projects from concept to mass production using his electrical design talents and mechanical aptitude.

What Others Are Asking

How much larger should a plated-through hole be than lead diameter to get good solder wetting?

I’m designing a new PCB where I have a whack of connectors that have to line up with the metalwork. There are some problematic connectors. All 4 pins are round. I want to have the holes as small as possible while allowing for good solder adhesion over the full length of the pin. I’m looking for guidance on how much clearance around the component lead I should have in order to get good solder wetting and adhesion.

What are the black spots in lead-free solder joints on PCB?

I am prototyping a PCB, using Chip Quik’s “SMDSWLF.031, a Sn96.5/ Ag3.0/ Cu0.5 solder with 2.2% no-clean flux. I find that the black spots appears frequently in larger pads on my board. I wonder if it is because I left the soldering iron more time heating the solder and that burnt the flux. What is that black residue? Is that a sign of a bad joint or maybe bad soldering technique?

Read Detailed Advice From Blog Articles

Why Opt for Outsourcing PCB Design Services
Ryan Chan

Why Opt for Outsourcing PCB Design Services?

More and more companies are turning to outsourcing PCB design services, especially those lacking PCB expertise and newly established companies, because designing a qualified printed

PCB Stackup Design Guide
Ryan Chan

PCB Stackup Design Guidelines

People expect electronic products to be rich in functions, but also require them to be small and portable, which brings new challenges to circuit board

Scroll to Top