Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Waarom de printplaat koud is, maar LED-lampen zijn nog steeds hot?

I have a THERMAL problem when designing a power LED ALUMINUM PCB. I have 10 5W UV power LEDs.Coldwater flows through water heat sink continuously. The problem is the PCB is cold, maar LED-lampen zijn nog steeds hot? Can anyone give me some advice.

The first people to call are the manufacturers of the LEDs. Ask then what it takes to keep the LEDs from overheating. They probably have a reference design.

There is a lot of at and a lot of science to keeping these LEDs cool enough.

Most of your input power goes into heat. Zo, (just guessing) 4 watts out of the 5 goes into heating the rather small LED die.

1. The most important thing to keeping them cool is keeping air out of the thermal path.

2. The next most important thing is to minimize the amount of thermal grease between surfaces. Thermal grease is a terrible thermal conductor, but it is a whole lot better than air. You should strive for no more than 0.001 inches. To minimize the amount of thermal grease, use the minimal amount and clamp the pieces together with a lot of force.

3. Tenslotte, you want to maximize the surface contact area. Very flat surfaces are helpful.

Easy things to try:

  • Use thermal epoxy to glue the LEDs to the PCB and the PCB to the water cooler.
  • Set up a fan to blow across the LEDs.
  • Solid copper on the bottom of the PCB to mate to the water cooler.

More difficult things to try:

  • Keramische PCB
  • Thermo-electric cooler between the water cooler and the PCB.
  • A compression plate. EEN 0.25 inch plate of aluminum with holes for each LED. The holes are big enough for the lens of the LED but not the body. The plate is used to mash the LEDs onto the PCB.
  • Optimal amounts of thermal compound between LEDs and PCB and PCB and cooler.You can get very cheap thermistors that you can glue to the cooler, the PCB and some of the LED bodies to monitor temperature so you can see if your improvements are actually improvements.

Lees verder: LED PCB-assemblage

#PCB Design #PCB Materials

Picture of Olivier Smit

Olivier Smit

Oliver is een ervaren elektronica-ingenieur met kennis van PCB-ontwerp, analoge circuits, ingebedde systemen, en prototyping. Zijn diepgaande kennis omvat schematisch vastleggen, firmware-codering, simulatie, indeling, testen, en probleemoplossing. Oliver blinkt uit in het omzetten van projecten van concept naar massaproductie met behulp van zijn elektrische ontwerptalenten en mechanische vaardigheden.
Picture of Olivier Smit

Olivier Smit

Oliver is een ervaren elektronica-ingenieur met kennis van PCB-ontwerp, analoge circuits, ingebedde systemen, en prototyping. Zijn diepgaande kennis omvat schematisch vastleggen, firmware-codering, simulatie, indeling, testen, en probleemoplossing. Oliver blinkt uit in het omzetten van projecten van concept naar massaproductie met behulp van zijn elektrische ontwerptalenten en mechanische vaardigheden.

Wat anderen vragen

Waarom zitten er tranen op de PCB-pads??

I received the PCB design file from supplier. There are some teardrops, which I have seldom seen. Why are there teardrops on the PCB design?

How to handle feedline of bluetooth PCB connected to a 2.4GHz chip antenna?

I’m making a 4 layer PCB prototype that uses a bluetooth mcu connected to a 2.4GHz chip antenna. I’m thinking about what to do with the feedline, whether it should be buried on one of the middle layers, or left on the top layer. To get a 50 ohm line, should I choose top layer with 13-mil width or buried miccrostrip with 7-mild width?

Lees gedetailleerd advies uit blogartikelen