What Is PCBA? Understanding Types, PCBA Process, and Differences from PCB

PCBA(Conjunto de la placa de circuito impreso) stands at the heart of modern electronic devices, todo el compacto, eficiente, y los productos electrónicos confiables que utilizamos hoy dependen de ello. Pero para algunos novatos, no saben mucho sobre PCBA, so we decided to write an article like this to comprehensively introduce PCBA including its types, production process, PCBA testing methods, etc.. Empecemos por su definición..

What Is PCBA?

PCBA refers to the finished board after all the electronic components are soldered onto a printed circuit board (tarjeta de circuito impreso). And we call the process of assembling components on the circuit board as PCB Assembly, which plays a very significant role in the manufacturing of electronic devices. The main purpose of a PCBA is to act as a platform that supports the necessary electronic components to work harmoniously, so as to achieve the intended functions of the electronic device.

Types of PCBAs

According to the assembly techniques, we can divide PCBAs into 3 tipos: SMT PCBAs, through-hole assembled PCBAs, and mixed-technology PCBAs.

  • PCBA SMT

SMT PCBAs, Como el nombre sugiere, utilizar Tecnología de montaje superficial where the components are mounted directly onto the PCB and connected to the traces through reflow soldering. SMT components are comparatively small and can be assembled on both sides of the PCB to achieve compact designs. PCBAs with surface mount assembled parts are used in most electronic products due to their enhanced performance and the ability to save space. And BGA assembly is particularly important for high-density connections in applications such as processors and memory chips.

  • Through-hole assembled PCBAs

Through-hole assembled PCBAs refer to printed circuit boards where electronic components are mounted using the through-hole technology. In this assembly method, components have leads that are passed through holes drilled through the PCB and soldered on the other side. This assembly technique comes with benefits such as improved mechanical joints and fast prototyping. sin embargo, they are not suitable for small and dense PCB designs as componentes de orificio pasante are relatively larger in size than the Surface Mount Devices (SMD).

  • Mixed-technology Printed Circuit Board Assembly

In mixed-technology printed circuit board assembly, through-hole and surface mount components are used on the same board. This kind of PCBA capitalizes on the benefits associated with both through-hole and surface mount techniques of assembly. It is usually applied where the design involves the usage of through hole connection which is mechanically secure and surface mount technology which affords density.

Differences between PCBA and PCB

PCB y PCBA son dos términos que se parecen mucho, y los principiantes en la industria electrónica a menudo se sienten confundidos acerca de ellos.. Entonces, ¿cuál es la diferencia entre PCB y PCBA??

Una PCB sirve como plataforma fundamental, que comprende el sustrato no conductor y vías conductoras que conectan eléctricamente varios componentes, pero sin ningún componente electrónico conectado. Es esencialmente una placa en blanco esperando la adición de componentes.. PCBA, por otra parte, representa el siguiente paso en el proceso de fabricación, donde los componentes electrónicos como resistencias, condensadores, y circuitos integrados(circuitos integrados) are soldered onto the PCB, convirtiéndola en una placa de circuito completamente ensamblada y funcional lista para usar en dispositivos electrónicos.

Below we have listed a table that lists the main differences between PCB and PCBA:

Característica tarjeta de circuito impreso PCBA
Definición Bare board with conductive tracks Completed board with components
Componentes No components attached Components soldered onto the board
Funcionalidad Cannot function on its own Ready for use in electronic devices
Complejidad Simpler Mas complejo
Costo Más bajo Más alto (includes components and assembly)
Pruebas Basic electrical tests Functional and quality tests
Time to produce Shorter Longer (includes assembly time)

PCBA Process: Una guía paso a paso

The PCBA process involves several crucial steps to assemble a functional printed circuit board:

  1. Estampado de pasta de soldadura:The process starts with the deposition of solder paste on specific areas on the circuit board where components will be soldered. This paste is a composition of tin balls mostly but contains a little silver and copper together with the flux that aids in melting and fixing on the board.
  2. Elegir y colocar: Electronic components and SMDs are placed onto the board using the manual tweezer and sometimes machines to place the components in the right position.
  3. Soldadura por reflujo: During the soldadura por reflujo, the board is exposed to a conveyor belt of the oven which can reach up to 250°C where the solder paste melts and firms up the components on the board when it cools.
  4. Inspección y Control de Calidad: After reflow, inspection is performed to check if there are any connection defects or misconnections, making sure that all the leads are well and tightly soldered on the board.
  5. Inserción de componentes de orificio pasante: Some circuit boards also need to use through-hole components. These components require holes in the PCB to get signals from one layer to another. This step can be done by manual and by machine.
  6. Soldadura manual y por ola: La soldadura manual se utiliza para la inserción de componentes PTH individuales., which is a time-consuming process. Another method is wave soldering where the board is passed over the molten solder and the components are fixed. Sin embargo, wave soldering is not friendly to use with double-sided PCBAs.
    Otras lecturas: Soldadura por ola vs. Soldadura por reflujo: Cual es la diferencia?
  7. Prueba e inspección final: The last step involves a rigorous functional testing where a product is tested in real operating conditions: different options of Voltage, señales, currents, etc., in order to identify any problems that might occur.

Popular PCBA Testing Methods

  • Pruebas en circuito (TIC):It is a commonly used testing technique involving the use of a bed of nail fixtures that contains multiple contact points to touch several points on the board all at once. This technique includes the identification of the presence, orientación, and basic operations of individual components. As much as ICT is fast and very efficient compared to others, it deals with the use of customized fixtures for each layout of the boards.
  • Flying Probe Testing (FTP): En FTP, the probes are used in a movable manner to test various points on the board. Compared to ICT, it is more flexible because it doesn’t require custom fixtures. Sin embargo, FPT is relatively slower than ICT in mass-scale testing.
  • Inspección óptica automatizada (AOI): It is an equipment system that uses a high-resolution camera along with an image processor to look for defects in the circuit board like missing components, wrong component placements, and solder problems. AOI is an efficient and non-contact inspection, but sometimes it may miss internal or hidden flaws.
  • Automated X-ray Inspection (AXI):In this testing method, X-rays are used in order to check internal aspects of components and solder joints. This method is particularly valuable in the assessment of BGAs (matrices de rejilla de bolas) and other hidden connections. While AXI costs more than AOI, the range of inspection is much wider.
  • Prueba funcional (FCT): It is conducted in order to assess the functionality of the board by mimicking the actual operating environment. FCT can be a very time-consuming process, which has to be done with custom test equipment. Event though, it is necessary as it ascertain that the board is operating as was designed to.

How to Choose the Best PCBA Manufacturer?

Choosing the best PCBA manufacturer is crucial to ensuring the quality and reliability of the products. Below we list key factors that should be considered when finding your PCBA manufacturing partner:

  • Seguro de calidad

The quality is always the primary concern. In selecting a PCBA manufacturer, we must consider if they meet the standard, if they have complied with a certification like ISO9001, and if they have a strict quality control system.

  • Capacidad técnica

In order to work on your project, a PCBA manufacturer must be capable of meeting the specifications of your project. This comprises their skill in handling various technologies of the PCBA such as through-hole and surface-mount technologies; their ability to handle the various components and materials, and their manufacturing capabilities as well.

  • Precios

Though quality is crucial, one cannot overlook the cost factor in manufacturing the PCBA. It is always ideal for us to work with a PCBA manufacturer who provides affordable prices and quality products at the same time.

  • Línea de tiempo de producción

Another important consideration is the time that it takes to produce the PCBA. A este respecto, it is essential to choose a manufacturer that is well capable of working within your time frame to deliver high-quality boards.

Trabaje con la tecnología MOKO para el éxito de su proyecto PCBA

Como fabricante líder de PCBA en China, MOKO Technology se dedica a ofrecer placas de circuito de alta calidad a precios competitivos., con un compromiso de transparencia y sin comisiones ocultas. Somos expertos en diferentes tecnologías de ensamblaje de PCB., y nuestras instalaciones de última generación están diseñadas para satisfacer las diversas necesidades de nuestros clientes.. We have a stringent quality control process to ensure the quality of each product. Comuníquese con nosotros to start your project now!

FAQs about Printed Circuit Board Assembly

What factors affect PCBA cost?

Major factors affecting PCBA cost include the size of the board, número de capas, complejidad, number of components, volume of production, type of tests that need to be done, and the time it takes to complete. Higher complexity and shorter turnaround time usually lead to the higher cost.

What’s the difference between SMT and through-hole assembly?

SMT is the process that places components on the surface of the PCB while through-hole involves insertion of the components through drilled holes on the PCB and soldering on the other side of the board. The SMT enables a higher component density and the technique is more widely used in modern PCBAs.

Can I use both through-hole and surface-mount components on the same PCBA?

si, through-hole and surface-mount components can be used on the same PCBA, in this way, the PCBA benefits from the strong mechanical strength of through-hole and the high density of surface-mount technology.

What are common PCBA defects?

Some of the common defects are solder bridges, cold or dry solder joints, bad component position, componentes faltantes, wrong polarity, and components getting damaged due to heat during soldering.

How does MOKO Technology ensure the quality of Printed Circuit Board Assembly?

The quality control of MOKO Technology’s PCBA starts with careful designs. también, we have a standardized production process and implement a series of testing methods to ensure the utmost quality of each board.

Can PCBAs be repaired if they fail?

En la mayoría de los casos, si, they can be repaired. sin embargo, some severely damaged PCBAs can not be repaired. Generalmente, repairing PCBAs involves replacing components, and fixing soldering issues or damaged traces.

voluntad li

Will es competente en componentes electrónicos., Proceso de producción de PCB y tecnología de montaje., y tiene amplia experiencia en supervisión de producción y control de calidad. Bajo la premisa de garantizar la calidad., Will proporciona a los clientes las soluciones de producción más efectivas.

Mensajes recientes

How to Create a PCB Drawing: A Step-by-Step Guide for Beginners

Bringing your electronic ideas to life begins with PCB drawing, which is the process of

1 month ago

8 Leading PCB Design Software: A Comprehensive Comparison

Printed Circuit Board design is one of the most significant processes in electronics production. Deciding

2 months ago

Una guía completa para desacoplar condensadores

Los dispositivos electrónicos que utilizamos cambian y se actualizan constantemente.. Cada vez son más pequeños y funcionales,…

2 months ago

Lápida de PCB: ¿Qué es y cómo evitarlo??

El montaje de PCB es un proceso muy complicado, en el que la precisión es siempre esencial. Even

2 months ago

Parte superior 10 Errores comunes en el diseño de PCB y cómo evitarlos

Es importante asegurarse de que el diseño de una PCB sea confiable porque cualquier error de diseño,…

2 months ago

Dominar la integridad de la señal de PCB: Factores clave, Consejos de diseño, y métodos de prueba

Al diseñar la placa de circuito, a high level of concentration is given towards PCB signal

3 months ago