Weil Hochfrequenz dazu führt, dass sich Elektronen anders verhalten als bei niedrigeren Frequenzen oder bei Gleichstrom.
Bei niedrigeren Frequenzen, Es dominieren Widerstandseffekte. jedoch, bei höheren Frequenzen, Impedanz und Kapazität beginnen zu dominieren. Ebenfalls, bei höheren Frequenzen, Elektronen werden an die Oberfläche eines Leiters gedrückt, anstatt in den Körper des Dirigenten einzudringen. Und das “passende Oberfläche” Die Art des dielektrischen Isolators, der zur Unterstützung des Leiters verwendet wird, hat ebenfalls einen Einfluss auf den Elektronenfluss.
Das Elektron weist sowohl elektronische als auch magnetische Eigenschaften auf, wenn es sich in einem Leiter bewegt. Dann können magnetische Kräfte auch in benachbarten Leitern Strom und Rauschen induzieren. Es verursacht Lärm, Übersprechen, und Wirbelströme, die den gewünschten Betrieb einer komplexen Schaltung stören.
Diese Effekte werden bei höheren verwendeten Frequenzen stärker ausgeprägt. Um dies zu lindern, Miniaturübertragungsleitungen werden in Leiterplatten mit spezifischen Abmessungen und Abstandseigenschaften eingebaut, um sicherzustellen, dass diese Hochgeschwindigkeitssignale in den Übertragungsleitungen enthalten sind, und auch, dass die Quellenimpedanz so genau wie möglich mit der Lastimpedanz übereinstimmt.
Alle diese Eigenschaften erfordern die geschickte Anwendung der Mathematik, Board-Design, und montierten Komponenten. Es umfasst Anpassungen für Spannungen, Strömungen, Widerstand, Zeitkonstanten, Impedanz, Impedanzanpassung, Logik, und Kreativität, sowie ein angeborenes Verständnis für die Wechselwirkung zwischen diesen miteinander verbundenen Faktoren.
Weiterlesen: Hochfrequenz-Leiterplatte
##PCB-Design für Unterhaltungselektronik