PCB Design & Layout

oben 10 Häufige Fehler beim PCB-Design und wie man sie vermeidet

Es ist wichtig sicherzustellen, dass ein PCB-Design zuverlässig ist, da es keine Designfehler gibt, egal wie klein, kann den Prozess der detaillierteren Herstellung und Montage verlangsamen und, so, lead to higher expenses. As a beginner in PCB design, you will realize that more issues tend to arise compared to an experienced designer. In diesem Artikel, Wir listen die Spitze auf 10 common PCB design mistakes and give the corresponding solutions for newcomers to avoid these mistakes.

  1. ImproperTrace Width

It’s tempting to use a uniform trace width throughout the board for simplicity, but this is not the best thing to do as different types of signals and power have varying requirements for trace widths. Zum Beispiel, traces that carry power have to be broader to dissipate heat with increased current flow without burning out. Auf der anderen Seite, high-impedance signals require narrow traces to minimize parasitic capacitance. Radio frequency signals are especially vulnerable and might require the exact value of trace widths to match characteristics impedance.

Weiterführende Literatur: PCB-Leiterbahnbreite: Warum es für die Leistung Ihres Vorstands wichtig ist

  1. Inadequate Trace Spacing

Manufacturers set minimum distance requirements for PCB production. Inexperienced designers, bestimmtes, consider compliance with these minimums as the best option; jedoch, it leads to higher costs, lower yields, and more extensive trace-to-trace coupling. Less spacing results in increased crosstalk and noise, which results in poor signal quality. So, it is suggested to keep enough space between traces, das ist, the distance between traces should be at least 3 times the distance between the signal layer and the next closest reference layer.

  1. Excessive Trace Length

For traces that need to transfer high-speed signals, they should be designed to be short and straight. In the case of the excessive length, there is a risk of facing problems such as signal reflection, increased susceptibility to EMI, and increased costs. The trace can be considered a transmission line when the length of a trace is more than a tenth of the wavelength of the signal that crosses it. In diesem Fall, besides the length, an impedance calculation (using one of the many specific tools, also free on the net) shall be done to verify impedance coupling and avoid losing signal power.

  1. Wrong Position of Decoupling Capacitors

The PCB power supply lines must use Entkopplungskondensatoren to provide all the board components with a stable power supply that is free from transients or oscillations. These capacitors are required to be always in parallel with the power supply input and should be located as close as they need to be to the pin of the component that requires power. The power line resulting from the power source must be well placed on the PCB so that it arrives at the decoupling capacitor before it goes to the pin that needs a stable voltage.

  1. Place Parts Too Close to the Board’s Edge

In a PCB design, if you put the PCB-Pad too close to the edge, there may be a chance to damage the pad during assembly. A good design ensures that the pads are within the board’s boundaries. The standard tolerance of a PCB’s length and width is ±. 020 Zoll. If your board employs SMT in soldering components, then ensure you provide some extra space for your PCB manufacturers to grip the board perfectly during the SMT Prozess. Wenn nicht, your manufacturer will have to employ rails or fixtures to support the PCB – something that will increase your manufacturing costs.

  1. Place SMT Pads Too Near to Each Other

SMT components have solder masks that are larger than the area of their pads. But individual solder masks should not intersect with each other. Andernfalls, during the solder reflow, some of the parts may move toward the centre (and each other). You don’t need one large piece of copper and at the same time you do not want various parts to migrate to the center and collide with each other disrupting the manufacturing process and causing a variety of imperfections. To rectify such problems, there should be adequate space between the SMT pads.

  1. Missing or Inadequate Vias

Vias are used for the interconnection of layers of a PCB and for heat dissipation. If vias are not properly employed, problems tend to arise such as poor signal quality and power distribution. It is recommended that designers should implement an appropriate number and size of vias for power and ground connection depending on the currents needed in the part and the frequency of signals. Thermal vias are relevant where there is a requirement of heat sinking in high power application areas.

  1. Overusing Layers in the Design

There is no doubt that multi-layer PCBs offer many advantages such as increased routing space and enhanced Signalintegrität. jedoch, overusing layers when there is no necessary would only increase cost and make the fabrication process more complicated. Deshalb, PCB designers must evaluate the circuit requirements carefully, considering better solutions like optimizing the component placement or using different routing strategies, instead of adding layers. An effective PCB design can achieve the same performance while also keep the cost within the budget.

  1. Elektromagnetische Interferenz (EMI)

The most common reason of electromagnetic interference is related to the poor design of printed circuit boards. To minimize EMI in the PCB, it is suggested to group elements according to their functionality, such as the analog, Digital, Leistung, low-frequency, Hochfrequenz, or other circuits, usw. Noch, it is appropriate to minimize on the, or preferably, do away with right angles on the traces and employ the use of metal containers and shielded cables that in turn allow for the absorption of interference.

  1. Incorrect Antenna Layout

If PCB includes antennas for carrying out wireless communication, then laying down the circuit should be very carefully done in order to avoid committing mistakes. Somit, it is essential to match the impedance between the transceiver and the antenna to optimize the power transfer. Allgemein, the cable line joining the transceiver to the antenna should ideally have an impedance of 50 Ω. For real and proper impedance adjustment, a Pi (LC) tuner filter, or any other matching circuit should be placed between the built-in antenna and the transceiver.

Weiterführende Literatur: So entwerfen Sie eine Leiterplattenantenne wie ein Profi?

Ryan Chan

Ryan ist der leitende Elektronikingenieur bei MOKO, mit mehr als zehn Jahren Erfahrung in dieser Branche. Spezialisiert auf PCB-Layout-Design, elektronisches Design, und eingebettetes Design, Er erbringt elektronische Design- und Entwicklungsdienstleistungen für Kunden in verschiedenen Bereichen, aus IoT, LED, zur Unterhaltungselektronik, medizinisch und so weiter.

kürzliche Posts

BGA Reballing: An Essential Process in Electronics Repair and Maintenance

BGA reballing emerges as a critical repair technique for modern electronic devices. Heutzutage, elektronische Geräte…

5 days ago

What Are PCB Stiffeners? Exploring Their Types, Uses, and Thicknesses

Do you know what PCB stiffeners are? They are widely used in flex and rigid-flex

2 weeks ago

Why PCB Warpage Happens and How You Can Prevent It?

Im PCB-Herstellungsprozess, PCB warpage is a common problem that manufacturers would encounter.

1 month ago

What Is a PCB Netlist? Alles, was Sie wissen müssen, finden Sie hier

In the world of printed circuit board design and manufacturing, precision and accuracy are paramount.

2 months ago

What Is Solder Wetting and How to Prevent Poor Wetting?

Soldering is a cornerstone technique in electronics assembly, it's used to connect electrical pieces and

2 months ago

7 Critical Techniques to Improve PCB Thermal Management

Heutzutage, electronic products are both compact and lightweight while performing a variety of functions. Diese…

2 months ago