Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

How do surface mount components withstand heat of reflow while through hole components can not?

Some online tutorials about soldering TH components, like transistors and ICs, are delicate components and can be easily damaged by heat. When it comes to soldering surface mount IC and components, some prefer to use a reflow oven which heats up the them to a temperature above the melting point of solder. So why?

One of the key points to answer your question is thermal stress.

When you apply heat to one pin of a device, there is a sudden and huge temperature difference between that point and the rest of the device. That difference is stress, and the result can be a material breakout.

In an oven, on the other hand, all the board is put under a controlled, gradual thermal rise. ALL the points of the device are at almost the same temperature, so there are no thermal stresses (or they are much smaller than) they were when you applied the soldering tool to ONE pin and the rest of the device is at room temperature.

Read More: SMT PCB Assembly

#PCB Assembly  #PCB Materials

Picture of Oliver Smith

Oliver Smith

Oliver is an experienced electronics engineer skilled in PCB design, analog circuits, embedded systems, and prototyping. His deep knowledge spans schematic capture, firmware coding, simulation, layout, testing, and troubleshooting. Oliver excels at taking projects from concept to mass production using his electrical design talents and mechanical aptitude.
Picture of Oliver Smith

Oliver Smith

Oliver is an experienced electronics engineer skilled in PCB design, analog circuits, embedded systems, and prototyping. His deep knowledge spans schematic capture, firmware coding, simulation, layout, testing, and troubleshooting. Oliver excels at taking projects from concept to mass production using his electrical design talents and mechanical aptitude.

What Others Are Asking

How can I manage the firmware development precess?

I ordered PCBA for IoT device and received the hardware product with good quality. However, there is a process I ignored before – firmware development based on the hardware. How should I move on?

Is it OK to bend a VIA in a Flex PBC?

On a Flex Printed Circuit (FPC) made out of Kapton polyimide, will anything bad happen if I put a VIA in a part of the FPC that has to bend? VIA size: 0.2 mm hole diameter in 0.4 mm copper diameter. FPC bend radius: 0.7 mm. Kapton thickness: 0.2 mm. Copper weight: either 2 oz or 1 oz (I haven’t decided yet)

Read Detailed Advice From Blog Articles