Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Why are RF PCBs hard to design?

I am a project procurement. Recently, Our project is to develop a television. Of all the materials supply, PCB was the slowest one. And even our engineer took part in the discussion with PCB supplier to push them. Is it really hard to make a RF PCB?

Because radio frequency makes electrons behave differently than they do at lower frequencies or at DC.

At lower frequencies, resistive effects dominate. However, at higher frequencies, impedance and capacitance start to dominate. Also, at higher frequencies, electrons begin to be forced to the surface of a conductor, instead of traveling into the body of the conductor. And the “matching surface” of the dielectric insulator being used to support the conductor also has an effect on electron flow.
The electron exhibits both electronic and magnetic properties as it moves in a conductor. Then magnetic forces can also induce current and noise in nearby adjacent conductors. It causes noise, cross-talk, and eddy currents that disrupt desired operation of a complex circuit.

These effects become more expressed at higher frequencies used. To alleviate this, miniature transmission lines are designed into PCBs with specific physical size and spacing characteristics to make sure these high-speed signals are contained in the transmission lines, and also that the source impedance matches the load impedance as closely as possible.

All of these characteristics require the skilled application of mathematics, board design, and mounted components. It includes accommodations for voltages, currents, resistance, time constants, impedance, impedance matching, logic, and creativity, as well as an innate understanding of the interaction between these interrelated factors.

Read More: High-Frequency PCB

#Consumer Electronic #PCB Design

Picture of Oliver Smith

Oliver Smith

Oliver is an experienced electronics engineer skilled in PCB design, analog circuits, embedded systems, and prototyping. His deep knowledge spans schematic capture, firmware coding, simulation, layout, testing, and troubleshooting. Oliver excels at taking projects from concept to mass production using his electrical design talents and mechanical aptitude.
Picture of Oliver Smith

Oliver Smith

Oliver is an experienced electronics engineer skilled in PCB design, analog circuits, embedded systems, and prototyping. His deep knowledge spans schematic capture, firmware coding, simulation, layout, testing, and troubleshooting. Oliver excels at taking projects from concept to mass production using his electrical design talents and mechanical aptitude.

What Others Are Asking

Are SMT components bad for high voltage applications?

Many assembly factories are asking for SMT jobs, while I think through hole would be a better option for a high voltage application. Before the high voltage project is started, we need to make a call on SMT or Through hole parts. Is there a study on this?

Why is wireless charging not ubiquitous?

Wireless charging is so convenient for user because it doesn’t need any wire, but it is not so popular as market. It must be some reasons in supplier side, isn’t it?

Read Detailed Advice From Blog Articles